

Regolamento Biotecnologie Molecolari e Industriali

Corso di studi: Biotecnologie Molecolari e Industriali (Laurea magistrale)

Denominazione: Biotecnologie Molecolari e Industriali

Dipartimento: BIOLOGIA

Classe di appartenenza: LM-8 BIOTECNOLOGIE INDUSTRIALI

Interateneo: No Interdipartimentale: No

Obiettivi formativi: La Laurea Magistrale in Biotecnologie Molecolari ed Industriali ha l'obbiettivo di formare laureati specialisti esperti in attività professionali di ricerca e sviluppo in diversi ambiti biotecnologici. Il percorso formativo si basa sull'acquisizione delle conoscenze metodologiche ed applicative nei diversi settori delle biotecnologie di base come le tecnologie genetiche microbiche, le tecnologie cellulari con particolare riferimento alle cellule staminali, la biologia molecolare post-genomica, le biotecnologie delle neuroscienze, e le biotecnologie facenti uso di animali modello ed organismi transgenici, di organismi vegetali, di protozoi di interesse industriale ed ambientale. A queste si affiancheranno conoscenze ed esperienze relative alla modellistica molecolare di biomolecole ed alla biochimica industriale. La formazione si basa altresì sull'acquisizione del metodo scientifico sperimentale tramite lo sviluppo di diverse attività di laboratorio i cui risultati sperimentali verranno valutati con opportuni strumenti biostatistici. La preparazione si arricchirà di conoscenze ed abilità bioinformatiche ai fini dell'organizzazione, costruzione e accesso alle banche dati di genomica e proteomica. Inoltre, i laureati dovranno avere approfondite conoscenze sull'organizzazione ed espressione dei genomi nonché acquisire esperienze nel campo dei microarray, biochip e biosensori per varie finalità, sia di ricerca che applicative. Il laureato, attraverso il percorso didattico frontale, le esercitazioni e le attività di laboratorio ed una consistente attività sperimentale per l'elaborazione della tesi di laurea, acquisisce capacità lavorativa e progettuale autonoma. I laureati avranno, pertanto, una preparazione professionale mirata al loro impiego in laboratori di ricerca sull'espressione e manipolazione genica, di sviluppo di colture cellulari ed organismi geneticamente modificati a scopo di ricerca o produzione di molecole di interesse, allo studio del funzionamento di sistemi ed organi, di diagnosi molecolare, in ambiti biomedici ed ambientali. Inoltre acquisiranno competenze nei processi di depurazione, bioconversione e risanamento di matrici ambientali tramite strategie biotecnologiche. La preparazione multidisciplinare permetterà loro di interagire con organizzazioni commerciali e di documentazione coinvolte nelle biotecnologie. Inoltre, i laureati acquisiranno capacità di accedere a studi di livello superiore come master, dottorati di ricerca e scuole di specializzazione.

Numero stimato immatricolati: 60

Requisiti di ammissione: Gli studenti che intendono iscriversi al Corso di Laurea Magistrale in Biotecnologie molecolari e industriali devono essere in possesso di un diploma di Laurea nella classe delle Lauree Triennali L-2 Biotecnologie (ex Classe 1 Biotecnologie DM 509/1999), o di altro titolo conseguito all'estero, riconosciuto idoneo in base alla normativa vigente. Per l'accesso al Corso di Laurea Magistrale in Biotecnologie molecolari e industriali dei laureati in altre classi di laurea, si prevede il possesso di requisiti curriculari corrispondenti a 90 CFU nei SSD riconducibili ai settori di base e ai settori caratterizzanti (Discipline biotecnologiche comuni e Discipline biotecnologiche con finalità specifiche: biologiche e industriali) indicati nella tabella della Classe L-2 ministeriale. Per tutti gli studenti si prevede inoltre una prova individuale di idoneità, consistente in una prove scritta ed una orale, con apposita Commissione, dalla quale possa essere evinta la preparazione propedeutica alle materie oggetto della LM, la motivazione e il potenziale dello studente per affrontare la LM in questione.

Specifica CFU: Per le attività formative che prevedono lezioni frontali ogni CFU corrisponde a 8 ore di didattica formale e 17 ore di studio individuale. Per le attività che prevedono esercitazioni in aula ogni CFU corrisponde a 12 ore di lezione e 13 ore di studio individuale. Per le attività che prevedono esperienze condotte in laboratorio ogni CFU corrisponde a 16 ore di laboratorio e 9 ore di studio individuale.

Modalità determinazione voto di Laurea: Il voto finale è determinato dalla commissione davanti alla quale il candidato discute la tesi di laurea magistrale. Il voto finale è una frazione con denominatore 110 (centodieci). Il voto massimo è 110/110 eventualmente qualificato con lode. Il voto finale, salva la lode, risulta dalla somma delle seguenti componenti: A) media dei voti in trentesimi, ponderata coi crediti, sugli esami di profitto superati nell'ambito del Corso di laurea magistrale (75% del peso totale); B) media dei voti attribuiti in trentesimi da ciascuno dei 5-7 membri (2-4 membri fissi, il relatore e i due correlatori) della Commissione di Laurea in considerazione dopo avere valutato una serie di aspetti esplicitati successivamente (25% del peso totale). il voto finale viene definito in base alla seguente formula (A*3+B)*115/120. L'arrotondamento è per difetto se la votazione ottenuta è inferiore alla metà di un intero, per eccesso se è pari o superiore alla metà di un intero.

E' facoltà del relatore o del presidente proporre, nel caso in cui il candidato raggiunga una valutazione finale di 110/110, l'assegnazione della lode; per proporre il conferimento della lode è necessario che lo studente abbia conseguito la votazione di 110/110 senza arrotondamenti in eccesso, e che abbia conseguito la votazione di 30/30 con lode in 2 esami fondamentali del corso di laurea magistrale o che abbia una media curricolare di almeno 29/30.

Attività di ricerca rilevante: Il corso di laurea magistrale in Biotecnologie Molecolari ed Industriali è stato sviluppato con il contributo di varie Unità del Dipartimento di Biologia, di Chimica, Scienze Agrarie, Farmacia, ed Informatica dell'Università di Pisa, i cui membri svolgono attività di ricerca su aspetti inerenti le discipline oggetto del corso di laurea, i curricula scientifici dei quali, mettono in evidenza le attività di ricerca che essi svolgono nell'ambito della biotecnologie.

- 1) Cellule staminali ed animali transgenici: Salò E., Batistoni R., Chapter 3 in: Animal Models in Eye Research (Tsonis P.A., Editor) in The planarian eye: a simple and plastic system with great regenerative capacity,pp 15, 26,tot. autori 2,tot.pag. 12, 2008. Dal Monte M, Cammalleri M, Martini D, Casini G, Bagnoli P.Antiangiogenic role of somatostatin receptor 2 in a model of hypoxia-induced neovascularization in the retina: results from transgenic mice. Invest Ophthalmol Vis Sci. 2007 Aug;48(8):3480-9.
- 2) Biotecnologie Vegetali: I. Grilli, R. Buselli, Bottega, M.R. Castiglione and C. Spanò. Nucleolytic enzymes and DNA degradation in

aleurone layers of imbibed aged wheat seeds SEED SCI. & TECHNOL., 36, 555-568, 2008; C. Spanò, R. Buselli , I. Grilli. Dormancy and germination in wheat embryos:

ribonucleases and hormonal control BIOLOGIA PLANTARUM 52 (4): 660-667, 2008 3) Biotecnologie microbiche e diagnostiche: Campa D., TAVANTI A., GEMIGNANI F., Mogavero Cs, Bellini I., Bottari F., BARALE R., LANDI S., SENESI S., A DNA microarray based on Arrayed-Primer Extension (APEX) technique for identification of pathogenic fungi responsible for invasive and superficial mycoses., JOURNAL OF CLINICAL MICROBIOLOGY, 2008.vol. 46,pp 909; 4) Farmacogenetica: Buda G, Maggini V, Galimberti S, Barale R, Rossi AM, Petrini M., NQO1(*)2 polymorphism and response to treatment in patients with multiple myeloma., LEUKEMIA RESEARCH,num. 31,pp 1029-1030,2007; 4) Bioinformatica e data base: Landi D., Gemignani F., Barale R., Landi S., A catalog of polymorphisms falling in microRNA-binding regions of cancer genes., D N A AND CELL BIOLOGY,pp 35 ,tot.pag 43,2008.; Re A, Cora D, Puliti AM, Caselle M, Sbrana I. Correlated fragile site expression allows the identification of candidate fragile genes involved in immunity and associated with carcinogenesis. BMC Bioinformatics. 2006 Sep 18;7:413; 5) Biotecnologie genetiche: Bottari F., Landi S., Barale R., Gemignani F., Single tube genotyping of GSTM1, GSTT1, and TP53 polymorphisms by multiplex PCR"., DNA SEQUENCE,pp 396-399,2006.;

- 6) Biopolimeri di uso biomedico: Cerbai B., SOLARO R., CHIELLINI E., Synthesis and Characterization of Functional Polyesters Tailored for Biomedical Applications, JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY,vol. 46,pp 2459, 2008; Bartolozzi I., SOLARO R., CHIELLINI E., Mari G.. Polymeric Sorbents for Virucide Agents In Blood Treatments, JOURNAL OF BIOACTIVE AND COMPATIBLE POLYMERS, vol. 44, pp 411, 2007.
- 7) Biotecnologie e prodotti naturali dei protisti: Guella G., Callone E., Di Giuseppe G., Frassanito R., Frontini F., Mancini I., Dini F., Hemivannusal and Prevannusadials – New Sesquiterpenoids from the Marine Ciliate Protist Euplotes vannus: The Putative Biogenetic Precursors of Dimeric Terpenoid Vannusals. EUROPEAN JOURNAL OF ORGANIC CHEMISTRY, vol. 31, pp 5226, 2007.; Trielli F., Cervia D., Di Giuseppe G., Ristori C., Kruppel T., Burlando B., Guella G, Viarengo A., Bagnoli P., Del monte-corrado M.u., Dini F.. Action Mechanisms of the Secondary Metabolite Euplotin C: Signaling and Functional Role in Euplotes. J. EUKARYOT. MICROBIOL., 55(5), pp. 365-373, 2008.

Progetti di ricerca di interesse nazionale (PRIN): "Ruolo della farmacogenetica nella definizione dell'attività e tollerabilità della chemioterapia antineoplastica" "Polinucleotidi, nucleotidi, nucleosidi e analoghi strutturali, quali regolatori metabolici, segnali chimici e potenziali farmaci".

Percorso di eccellenza: non previsto

Rapporto con il mondo del lavoro: Durante la progettazione del percorso formativo in questione, avvenuto in maniera coordinata con quella dei corsi dell'Area Biologica dell'Università di Pisa, si è tenuto conto di quanto emerso nelle riunioni del Comitato di Indirizzo, svoltesi più volte a partire dal 2007. Durante tali riunioni, è emersa l'importanza di focalizzare il percorso formativo della LM "Biotecnologie molecolari ed industriali" su tematiche biotecnologiche emergenti in considerazione di potenziali ricadute praticoapplicative, differenziandone, così, il suo percorso formativo da quello più teorico sviluppato nella LM "Biologia cellulare e molecolare". Il corso di LM in "Biotecnologie Molecolari ed Industriali" è stato sviluppato con il contributo di docenti afferenti al Dipartimento di Biologia, Chimica, Scienze Agrarie, Farmacia ed Informatica dell'Università di Pisa.

Primo anno (60 CFU)			
Biochimica Industriale (6 CFU)			
	CFU	SSD	Tipologia
Biochimica Industriale	6	BIO/10	Caratterizzanti
Biomateriali e biochip in Biologia (6 CFU)			
	CFU	SSD	Tipologia
Biomateriali e Biochip in Biologia	6	CHIM/04	Caratterizzanti
Biostatistica (6 CFU)			
	CFU	SSD	Tipologia
Biostatistica	6	SECS-S/02	Caratterizzanti
Biotecnologie genetiche e biologia molecolare	post genomica (9 C	FU)	
	CFU	SSD	Tipologia
Biologia molecolare post genomica	3	BIO/11	Caratterizzanti
Biotecnologie genetiche	6	BIO/18	Caratterizzanti
Biotecnologie in Neuroscienze (6 CFU)	•		•

Biotecnologie in Neuroscienze	6	BIO/09	Caratterizzanti
Cellule staminali, animali modello ed organismi tr	ansgenici (9 CFU)	
	CFU	SSD	Tipologia
Animali Modello e Organismi Transgenici	9	BIO/06	Caratterizzanti
Biotecnologie microbiche nei processi industriali	(12 CFU)	SSD	Tipologia
Biotecnologie microbiche nei processi industriali	· · · · · · · · · · · · · · · · · · ·	SSD	Tipologia
I protisti nei processi industriali	· · · · · · · · · · · · · · · · · · ·	SSD BIO/05	Tipologia Affini o integrative
	CFU		
I protisti nei processi industriali Biotecnologie microbiche	CFU 6	BIO/05	Affini o integrative
I protisti nei processi industriali	6 6	BIO/05 BIO/19	Affini o integrative Affini o integrative
I protisti nei processi industriali Biotecnologie microbiche	CFU 6	BIO/05	Affini o integrative

Curriculum: PIANO DI STUDIO UNICO

Secondo anno (60 CFU)

Modellistica molecolare di biomolecole (6 CFU)

	CFU	SSD	Tipologia
Modellistica molecolare di biomolecole	6	CHIM/02	Caratterizzanti

Scelta libera dello studente (9 CFU)

	CFU	SSD	Tipologia
Scelta libera dello studente	9		Altre attività - scelta libera dello studente

Tesi di Laurea Magistrale (45 CFU)

	CFU	SSD	Tipologia
Tesi di Laurea Magistrale	45		

Gruppi per attività a scelta nel CDS Biotecnologie Molecolari e Industriali

Gruppo GR2 (9 CFU)

Descrizione: Gruppo Affini **Tipologia:** Affini o integrative

Attività contenute nel gruppo

Biotecnologie per il risanamento ambientale (3 CFU)

Modulo	CFU	SSD	Tipologia	Caratteristica
Biotecnologie per il risanamento ambientale	3	BIO/04 FISIOLOGIA VEGETALE	Altre attività - scelta libera dello studente	lezioni frontali + esercitazioni

Farmacogenetica (3 CFU)

Modulo	CFU	SSD	Tipologia	Caratteristica

Farmacogenetica	3	BIO/18 GENETICA	Altre attività - scelta libera dello studente	lezioni frontali		
Microbiologia degli alimenti (3 CFU)						
Modulo	CFU	SSD	Tipologia	Caratteristica		
Microbiologia degli alimenti	3	MED/07 MICROBIOLOGIA E MICROBIOLOGIA CLINICA	Altre attività - scelta libera dello studente	lezioni frontali		

Gruppo Attività consigliate per la libera scelta (9 CFU)

Descrizione: Scelta guidata

Note:

Le attività formative a scelta dello studente debbono essere approvate dal Consiglio di Corso di Studio, previo parere della Commissione Didattica. Le attività formative elencate nel gruppo non richiedono l'approvazione dei due organi sopramenzionati.

Attività contenute nel gruppo

Biofarmaci (3 CFU)

Modulo	CFU	SSD	Tipologia	Caratteristica
Biofarmaci	3	BIO/14 FARMACOLOGIA	Altre attività - scelta libera dello studente	lezioni frontali

Biotecnologie per il risanamento ambientale (3 CFU)

Modulo	CFU	SSD	Tipologia	Caratteristica
Biotecnologie per il risanamento ambientale	3	BIO/04 FISIOLOGIA VEGETALE	Altre attività - scelta libera dello studente	lezioni frontali + esercitazioni

Evoluzione Molecolare dell'Uomo (6 CFU)

Modulo	CFU	SSD	Tipologia	Caratteristica
Evoluzione Molecolare dell'Uomo	6	BIO/08 ANTROPOLOGIA	Altre attività - scelta libera dello studente	lezioni frontali+laboratorio

Farmacogenetica (3 CFU)

Modulo	CFU	SSD	Tipologia	Caratteristica
Farmacogenetica	3	BIO/18 GENETICA	Altre attività - scelta libera dello studente	lezioni frontali

Farmacologia generale (3 CFU)

Modulo	CFU	SSD	Tipologia	Caratteristica
Farmacologia generale	3	BIO/14 FARMACOLOGIA	Altre attività - scelta libera dello studente	lezioni frontali

Microbiologia degli alimenti (3 CFU)

Modulo	CFU	SSD	Tipologia	Caratteristica
Microbiologia degli alimenti		MED/07 MICROBIOLOGIA E MICROBIOLOGIA CLINICA	Altre attività - scelta libera dello studente	lezioni frontali

Biochimica Industriale (6 CFU)

Denominazione in Inglese: Industrial Biochemistry

Obiettivi formativi: Il corso si propone di fornire le conoscenze biochimiche per lo studio di processi di interesse nella bio-industria. Verranno trattati i seguenti argomenti:biosintwsi di metaboliti primari e second isolamento e purificazione di proteine; biocatalizzatori nell'industria chimica e farmaceutica; utilizzazione di enzimi nella industria bioanalitica; sensori enzimatici; immobilizzazione degli enzimi; cinetica degli enzimi immobilizzati; anticorpi bifunzionali e catalitici; modificazione delle caratteristiche strutturali e funzionali di proteine mediante mutagenesi sito-specifica; progettazione di farmaci sulla base dei dati strutturali del bersaglio biologico, fondamenti bichimici del "drug delivery".

Obiettivi formativi in Inglese: The course will provide the biochemical knowledge for the study of processes of interest in the bio-industry. The following topics will be considered: biosynthesis of primary and secondThe course will provide the biochemical knowledge for the study of processes of interest in the bio-industry. The following topics will be considered: isolated and immobilized enzymes as catalysts in the bioconversions; modification of structural and functional characteristics of proteins through site-directed mutagenesis; utilization of antibodies in the chemical and pharmaceutical industry: catalytic antibodies; bifunctional antibodies; biochemical basis of drug delivery: identification of enzymatic targets, strategies for the identification of new compounds, drugs design on the basis of the structural data of the target; enzymatic sensors. ary metabolites; isolation and purifucation of proteins;

CFU: 6 Reteirabilità: 1

Modalità di verifica finale: Esame orale con voto in trentesimi

Lingua ufficiale: Italiano

Moduli

Denominazione	CFU	SSD	Tipologia	Caratteristica
Biochimica Industriale	6	BIO/10 BIOCHIMICA	Caratterizzanti	lezioni frontali

Biofarmaci (3 CFU)

Denominazione in Inglese: Biopharmaceuticals

Obiettivi formativi: Il corso verterà sulle principali tipologie di nuovi farmaci consentite dalle biotecnologie, con specifici esempi di molecole già utilizzate in terapia: proteine e peptidi ricombinanti, anticorpi monoclonali e frammenti anticorpali, immunotossine, vaccini, oligonucleotidi.. Il corso prevederà anche dei cenni sulla terapia genica.

Obiettivi formativi in Inglese: Object of the course will be the main types of new drugs created through biotechnology with specific examples of molecules already available on the market: recombinant proteins and peptides, monoclonal antibodies and fragments, immunotoxins, vaccines, oligonucleotides. Some aspects of gene therapy will also be included.

CFU: 3 Reteirabilità: 1

Modalità di verifica finale: Esame orale con voto in trentesimi

Lingua ufficiale: Italiano

Moduli

Denominazione	CFU	SSD	Tipologia	Caratteristica
Biofarmaci	3	BIO/14 FARMACOLOGIA	Altre attività - scelta libera dello studente	lezioni frontali

Biomateriali e biochip in Biologia (6 CFU)

Denominazione in Inglese: Biomaterials and biochip

Obiettivi formativi: Scopo del corso è fornire conoscenze sulle interazioni di materiali polimerici con sistemi biologici e sul loro uso in farmacologia, medicina e nel campo dei biosensori. Verrà trattata la biodegradazione, la biocompatibilità, biofunzionalità e risposta immunologica ai biomateriali. Saggi in vivo per la determinazione della biocompatiblità e biofunzionalità e correlazione con i test in vitro ed interazioni tra biomateriali e cellule. Metodi per la determinazione delle citochine. Farmaci polimerici, farmaci polimerizzati, trasportatori di farmaci e loro applicazioni in campo biomedico e farmaceutico. Ingegneria tissutale. Biosensori, biochips, Lab-On-a-Chip (LOC), Micro Total Analysis Systems (μTAS).

Obiettivi formativi in Inglese: Purpose of the course is to provide knowledge on the interactions of polymeric materials with biological systems and on their use in pharmacology, medicine and in the field of the biosensors. The biodegradation, the biocompatibility, biofunzionalization and the immunological response to the biomaterials will be treated. "In vivo" tests for the determination of the biocompatibility and the correlation with the tests in vitro will be described. Interaction between biomaterials and cells. Methods for

cytokins assessment. Polymeric and polymerized medicines, drug transporters and their applications in biomedical and pharmaceutical field will be treated as well as tissue engineering, biosensors and biochips.

CFU: 6

Reteirabilità: 1

Modalità di verifica finale: Esame orale e valutazione in trentesimi

Lingua ufficiale: Inglese

Moduli

Denominazione	CFU	SSD	Tipologia	Caratteristica
Biomateriali e Biochip in Biologia	6	CHIM/04 CHIMICA INDUSTRIALE	Caratterizzanti	lezioni frontali+laboratorio

Biostatistica (6 CFU)

Denominazione in Inglese: Biostatistics

Obiettivi formativi: Introduzione alla statistica descrittiva; cenni sulla teoria delle probabilita'; statistica inferenziale: le principali distribuzioni di probabilita' e stima dei parametri; distribuzioni campionarie; test di ipotesi, errori di I e II specie; inferenza sulle medie, sulle proporzioni; analisi della varianza ad uno e due criteri, e concetto di interazione, regressione e correlazione lineare semplice; cenni di statistica non parametrica. Cenni sui principale studi e misure epidemiologiche

Obiettivi formativi Fornire gli strumenti per impostare un appropriato disegno dell'esperimento, per gestire in modo adeguato i risultati ottenuti, per verificare le ipotesi di partenza

Obiettivi formativi in Inglese: Introduction to descriptive statistics and to probability theory; distribution parameters of main probability distributions; sampling distributions; testing a statistical hypothesis, errors of type I and II; inference on means; inference on proportions; one and two way ANOVA, interaction; linear regression and correlation; summary introduction to non parametric statistics. Introduction to epidemiological measures, studies and methods.

Obiettivi formativi in inglese: give to the students the tools for planning an experimental design, to describe results and to verify the stated hypotheses

Introduction to descriptive statistics; summary description of probability theory; main probability distributions and estimates of distribution parameters; sampling distributions; testing a statistical hypothesis, errors of type I and II; inference on means; inference on proportions; one and two way ANOVA, interaction; linear regression and correlation; introduction to non parametric statistics. Introduction to epidemiological measures, studies and methods

CFU: 6
Reteirabilità: 1

Propedeuticità: Eesame scritto ed orale con voto in trentesimi

Modalità di verifica finale: Esame scritto ed orale con votazione in trentesimi

Lingua ufficiale: Italiano

Moduli

Denominazione	CFU	SSD	Tipologia	Caratteristica
Biostatistica	6	SECS-S/02 STATISTICA PER LA RICERCA SPERIMENTALE E TECNOLOGICA	Caratterizzanti	lezioni frontali + esercitazioni

Biotecnologie genetiche e biologia molecolare post genomica (9 CFU)

Denominazione in Inglese: Genetic biotechnology and post-genomic molecular biology

Obiettivi formativi: Modulo I - Introduzione alle discipline "omiche": Trascrittomica e Proteomica. Analisi dei profili di espressione di interi genomi. Principi e metodologie di base per studi su larga scala del trascrittoma e del proteoma. Mappe di interazioni proteiche. Selezione da repertori molecolari (genoteche di espressione e di esposizione). Spettrometria di massa applicata alla purificazione di complessi proteici. Nuove soluzioni dal campo delle nanotecnologie: nano-proteomica. Impatto biotecnologico. Obiettivi: conoscenza delle tecniche di base per analizzare genomi e profili di espressione, per studiare le interazioni tra le proteine e per consultare archivi elettronici di banche dati. Modulo II-Aspetti rilevanti delle biotecnologie genetiche nella ricerca bio-medica e in processi di interesse applicativo della biologia animale e vegetale. Attività di laboratorio inerente a: creazioni di lieviti transgenici per lo studio della

interazione tra proteine, silenziamento genico tramite interferenza a RNA, DNA fingerprinting per la caratterizzazione genotipica individuale, la tracciabilità genetica delle specie, il rilevamento di inquinanti ambientali e disruptori endrocrini.

Modulo II - Aspetti rilevanti delle biotecnologie genetiche nella ricerca bio-medica e in processi di interesse applicativo della biologia animale e vegetale. Attività di laboratorio inerente a: creazioni di lieviti transgenici per lo studio della interazione tra proteine, silenziamento genico tramite interefrenza a RNA, DNA fingerprinting per la caratterizzazione genotipica individuale, la tracciabilità genetica delle specie, il rilevamento di inquinanti ambientali e disruptori endrocrini.

Obiettivi formativi in Inglese: Module I - Introduction to "omics" disciplines: Transcriptomics and Proteomics. Analysis of gene expression profiles. Basic principles, methodologies and current practices of high throughput technologies. Protein interactions networks. Molecular repertoires selections (expression and display libraries). Application of Mass Spectrometry for purification of multiproteic complexes. New approaches of Nano-proteomics. Biotechnology's Impact. Objectives: knowledge of basic technologies to analyse genomes and expression profiles, to study protein-protein interactions and to consult data-bases. Module II-Main topics on the genetic biotechnologies in bio-medical research and in applicative processes in the field of animal and plant biology. Laboratory activity: creation and testing of transgenic yeast for use in protein-protein interaction screening; small Interference RNA-mediated Gene Silencing; DNA fingerprinting for identification of individuals, species traceability, assessment of environmental pollutants and endocrine disruptors.

Module II - Main topics on the genetic biotechnologies in bio-medical research and in applicative processes in the field of animal and plant biology. Laboratory activity: creation and testing of transgenic yeast for use in protein-protein interaction screening; small Interference RNA-mediated Gene Silencing; DNA fingerprinting for identification of individuals, species traceability, assessment of environmental pollutants and endocrine disruptors.

CFU: 9

Reteirabilità: 1

Modalità di verifica finale: Esame orale in trentesimi

Lingua ufficiale: Italiano

Moduli

Denominazione	CFU	SSD	Tipologia	Caratteristica
Biologia molecolare post genomica	3	BIO/11 BIOLOGIA MOLECOLARE	Caratterizzanti	lezioni frontali
Biotecnologie genetiche	6	BIO/18 GENETICA	Caratterizzanti	lezioni frontali+laboratorio

Biotecnologie in Neuroscienze (6 CFU)

Denominazione in Inglese: Biotechnology in Neurosciences

Obiettivi formativi: Il corso si prefigge di fornire agli studenti le conoscenze relative all'uso di biotecnologie nella ricerca applicata al campo delle neuroscienze. Verranno impartiti principi di fisiologia del Sistema Nervoso Centrale, di Neurobiologia, di Neurofisiologia. Attività ligando-recettore dei neurotrasmettitori e meccanismi di trasduzione del segnale a livello di membrana. Tecniche cellulari di interesse neurobiologico. Tecniche biomolecolari applicate alle Neuroscienze: real-time RT-PCR, differential display analysis, uso di microarray, RNA interference. Uso di radiotraccianti nelle Neuroscienze. Uso di modelli animali nello studio delle malattie neurodegenerative. Biotecnologie per lo sviluppo di farmaci e di sostanze di interesse per le Neuroscienze.

Obiettivi formativi in Inglese: The main goal of the course is to give the students knowledge about the use of biotechnologies in research applied to neuroscience. Principles of physiology of the central nervous system, neurobiology, neurophysiology will be provided. Ligand-receptor activity of neurotransmitters. Signal transduction pathways. Cellular technology of interest for neurobiology. Biomolecular technology applied to neurosciences: real-time RT-PCR, differential display analysis, use of microarray, RNA interference. Use of radiotracers in neurosciences. Animal models in the study of neurodegenerative diseases. Biotechnologies in drug development.

CFU: 6

Reteirabilità: 1

Modalità di verifica finale: esame orale con votazione in trentesimi

Lingua ufficiale: Inglese

Denominazione	CFU	SSD	Tipologia	Caratteristica
Biotecnologie in Neuroscienze	6	BIO/09 FISIOLOGIA	Caratterizzanti	laboratorio e/o esercitazioni

Biotecnologie microbiche nei processi industriali (12 CFU)

Denominazione in Inglese: Microbial Biotechnology in industrial processes

Obiettivi formativi: Modulo I. Biotecnologie microbiche. Il corso si prefigge di fornire allo studente una conoscenza di base sulle principali biotecnologie applicate alla microbiologia. Mediante esempi rappresentativi, saranno sottolineate le principali applicazioni delle biotecnologie alla diagnostica microbica, alla tipizzazione dei microrganismi, alla produzione di proteine ricombinanti, alle strategie di prevenzione delle infezioni.

Modulo II. I protisti nei processi industriali. : Conoscenze di base dei protisti e panoramica delle principali biotecnologie ad essi applicate. Saranno presentati aspetti di biologia molecolare, biologia cellulare, parassitologia, e metodi di ricerca di mutanti capaci di metabolizzare o neutralizzare sostanze inquinanti. Saranno analizzati gli aspetti più strettamente tecnologici dei processi microbiologici come i bioreattori. Il corso inoltre illustrerà le potenzialità dell'uso dei protisti in diversi settori applicativi per l'ottenimento di beni e servizi impiegabili in campo farmacologico, cosmetico, nutrizionale, conserviero e anticrittogamico, per il trattamento delle acque reflue sia domestiche che industriali. Le esercitazioni di laboratorio permetteranno di far conoscere le tecniche fondamentali nei vari campi delle biotecnologie applicate ai protisti come l'isolamento, la caratterizzazione morfologica e genetico-molecolare e il mantenimento in coltura per la produzione di sostanze di interesse.

Obiettivi formativi in Inglese: Module I. Microbial biotechnology. The course is aimed to provide the student with a basic knowledge on the main biotechology applied to microbiology. Through representative examples, the most relevant biotechnological applications to microbial diagnosis, molecular typing, recombinant protein production, infection prevention, will be described and discussed. The course will also illustrate the potentialities of the use of the protistis in different fields for the obtainment of goods and employable services in pharmacology, cosmetology, nutrition, pest control, and for the treatment of the waste waters both from domestic and industrial origin.

Module II. Protists in industrial processes. Protists basic knowledge will be provided beside an overview of the principal biotechnology applied to them. Principal aspects of molecular biology, cellular biology, parasitology, the search of mutants able to metabolize or to neutralize polluting substances will be showed. Technological aspects of the microbiological processes involved in bioreactors will be analysed. The course will also illustrate the potentialities of the use of the protistis in different fields for the obtainment of goods and employable services in pharmacology, cosmetology, nutrition, pest control, and for the treatment of the waste waters both from domestic and industrial origin. The laboratory activity will allow knowing the fundamental techniques in the various fields of the biotechnology applied to the protists such as their isolation, their morphological and genetic-molecular characterization and their maintenance in culture for the production of substances of interest.

CFU: 12 Reteirabilità: 1

Modalità di verifica finale: Esame orale con voto in trentesimi

Lingua ufficiale: Italiano

Moduli

Denominazione	CFU	SSD	Tipologia	Caratteristica
I protisti nei processi industriali	6	BIO/05 ZOOLOGIA	Affini o integrative	lezioni frontali+laboratorio
Biotecnologie microbiche	6	BIO/19 MICROBIOLOGIA GENERALE	Affini o integrative	lezioni frontali + esercitazioni

Biotecnologie per il risanamento ambientale (3 CFU)

Denominazione in Inglese: Environmental recovery by biotechnology

Obiettivi formativi: Il corso si propone di fornire allo studente gli strumenti per comprendere i meccanismi di attenuazione naturale e biodegradazione degli xenobiotici nell'ambiente. Si propone altresì di fornire le basi relative alle competenze di programmazione di interventi tesi all'ottimizzazione della naturale omeostasi ambientale, all'insegna del recupero di zone degradate, attraverso l'applicazione di organismi viventi come piante, batteri e funghi, quali agenti di detossificazione e/o degradazione degli inquinanti nell'ambiente.

Obiettivi formativi in Inglese: The principal aim of the course is the study of the mechanisms of natural attenuation, bio-degradation and bio-transformation of xenobiotics in the environment. This understanding will provide the student with the essential capabilities to programme any kind of intervention, based on the application of plants, bacteria and fungi, eventually capable to detoxify the environment, to recover the homeostasis of habitats in contaminated areas

CFU: 3

Reteirabilità: 1

Propedeuticità: Fisiologia vegetale, microbiologia

Modalità di verifica finale: Esame orale con votazione in trentesimi

Lingua ufficiale: Italiano

Moduli

Denominazione	CFU	SSD	Tipologia	Caratteristica
Biotecnologie per il risanamento ambientale	3	BIO/04 FISIOLOGIA VEGETALE	Altre attività - scelta libera dello studente	lezioni frontali + esercitazioni

Biotecnologie Vegetali (6 CFU)

Denominazione in Inglese: Plant Biotechnology

Obiettivi formativi: Il corso si propone di fornire agli studenti un quadro generale delle principali biotecnologie applicate alle piante. Saranno trattate le più comuni tecniche utilizzate per il miglioramento genetico ed attraverso attività di laboratorio gli studenti ne sperimenteranno alcune. Verranno inoltre descritte le principali piante geneticamente modificate ed il loro impatto sull'ambiente e sulla salute animale ed umana.

Obiettivi formativi in Inglese: The aim is to supply students with a general picture of main plant biotechnologies. Most common techniques used in genetic improvement will be discussed. Some of them will be practically applied in laboratory activities. Main genetically modified plants and their impact on environment and on animal and human health will be described

CFU: 6
Reteirabilità: 1

Modalità di verifica finale: Esame orale con votazione in trentesimi

Lingua ufficiale: Italiano

Moduli

Denominazione	CFU	SSD	Tipologia	Caratteristica
Biotecnologie Vegetali	6	BIO/04 FISIOLOGIA VEGETALE	Affini o integrative	lezioni frontali+laboratorio

Cellule staminali, animali modello ed organismi transgenici (9 CFU)

Denominazione in Inglese: Stem cells, animal model and transgenic organisms

Obiettivi formativi: Modulo I- Il corso si propone di dare una visione ampia delle caratteristiche fondamentali delle cellule staminali embrionali e dei tessuti adulti e dei loro metodi di studio. Sarà inoltre analizzato il loro potenziale utilizzo nella medicina rigenerativa, basato sulla possibilità di indurre differenziamento verso tipi cellulari specifici, che potranno sostituire cellule danneggiate o comunque alterate.

Modulo II-Lo studente avrà una visione generale degli organismi modello più comunemente impiegati nei laboratori per la ricerca di base ed applicata. Apprenderà i principi, le conoscenze di base e le strategie molecolari alla base della transgenesi convenzionale e binaria per la modificazione del genoma di animali sia da laboratorio che da allevamento. Attraverso attività di laboratori teorico/pratici apprenderà l'uso della strumentazione e le metodologie impiegate per la transgenesi nel topo.

Obiettivi formativi in Inglese: Module 1- The course deals with the study of the fundamental characteristics of stem cells both from embryos and adult tissues. Their potential use, based on the possibility to induce differentiation toward specific cellular types, that can replace damaged cells, will be analyzed.

Module 2- The student will have a general view of the model organisms employed in the laboratories for the basic and applied research. He will learn the principles, the knowledge of base and the molecular strategies at the base of the conventional and binary transgenesis for the modification of the genome of animals both for laboratory use that for breeding. Through activity of theoretical/practical laboratories the student will learn the use of the instrumentation and the methodologies employed for mouse transgenesis.

CFU: 9

Reteirabilità: 1

Modalità di verifica finale: Esame orale con votazione in trentesimi

Lingua ufficiale: Inglese

Denominazione	CFU	SSD	Tipologia	Caratteristica
Animali Modello e Organismi Transgenici	9	BIO/06 ANATOMIA COMPARATA E CITOLOGIA	Caratterizzanti	lezioni frontali+laboratorio

Didattica della Biologia (6 CFU)

Denominazione in Inglese: Teaching Biology

Obiettivi formativi: Il corso, articolato in due moduli, tratta in modo specifico le metodologie didattiche da impiegare nei diversi livelli di istruzione secondaria nell'insegnamento della biologia, attraverso l'adozione di esempi scelti dai programmi disciplinari. (I modulo = didattica in scuole secondarie di I grado; Il modulo = didattica in scuole secondarie di II grado).

Obiettivi formativi in Inglese: The course, divided in two modules, specifically covers the teaching methodologies to adopt at different education levels in biological science classes, by introducing selected examples from teaching programmes in this field. (I module = teaching at 5-8 levels; I module = teaching at 9-12 levels).

CFU: 6 Reteirabilità: 1

Modalità di verifica finale: Esame orale con votazioni in trentesimi

Lingua ufficiale: Italiano

Moduli

Denominazione	CFU	SSD	Tipologia	Caratteristica
Didattica della Biologia mod. I	3		Altre attività - scelta libera dello studente	laboratorio e/o esercitazioni
Didattica della Biologia mod.	3		Altre attività - scelta libera dello studente	laboratorio e/o esercitazioni

Evoluzione Molecolare dell'Uomo (6 CFU)

Denominazione in Inglese: Human Molecular Evolution

Obiettivi formativi: Si seguirà il percorso storico della disciplina, dai primi dati di tipo immunologico-comparato fino agli sviluppi più recenti innescati dal sequenziamento completo del genoma umano. Saranno affrontati i fondamenti teorici e pratici delle metodologie volte al recupero di informazioni molecolari a partire da campioni antropologici. Particolare attenzione verrà dedicata all'analisi del DNA, antico e moderno.

Saranno descritti ed applicati a casi-studio gli algoritmi più adatti per elaborare i diversi tipi di dati molecolari.

Esercitazioni: Acquisizione dei principi di funzionamento delle principali attrezzature da laboratorio (PCR, sequenziatore ABI-PRISM, spettrofotometro). Estrazione e purificazione del DNA da tessuti di varia natura e antichità.

Amplificazione in PCR. Elettroforesi su gel di agarosio. Cycle-sequencing. Interpretazione degli

elettroferogrammi. Uso di software specifici per l'elaborazione dei dati molecolari: costruzione di alberi filogenetici, analisi molecolare della varianza (AMOVA), analisi network, simulazione di modelli evolutivi.

Obiettivi formativi in Inglese: A brief historical excursus of the discipline will be offer: from the pioneering immunological comparative studies, to the recent developments triggered by the complete sequencing of the human genome. We shall describe the theoretical and practical basis of the methodologies used to retrieve molecular information from anthropological samples. Special attention will be paid to ancient and modern DNA. Simple algorithms to properly elaborate different kinds of molecular data will be described and applied to case-studies.

Workshops: Handling of laboratory equipments: PCR, ABI-PRISM Sequencer, spectrophotometer. DNA extraction and purification from tissues of different kind and antiquity. PCR amplification. Agarose gel electrophoresis. Cycle-sequencing. Interpretation of ABI-Electropherograms.

Relevant software for the management of molecular data: construction of phylogenetic trees, Analysis of Molecular Variance (AMOVA), Network analysis, Evolutionary modeling and simulation.

CFU: 6

Reteirabilità: 1

Modalità di verifica finale: Esame orale con votazione in trentesimi

Lingua ufficiale: Italiano

Moduli

Denominazione	CFU	SSD	Tipologia	Caratteristica
Evoluzione Molecolare dell'Uomo	6	BIO/08 ANTROPOLOGIA	Altre attività - scelta libera dello studente	lezioni frontali+laboratorio

Farmacogenetica (3 CFU)

Denominazione in Inglese: Pharmacogenetics

Obiettivi formativi: Il corso si propone di fornire le conoscenze fondamentali sulle basi genetiche della variabilità della risposta individuale ai farmaci più comunemente utilizzati. I polimorfismi dei geni implicati nel metabolismo dei farmaci, dei recettori di membrana e dei trasportatori cellulari che modulano l'efficacia e la capacità dei farmaci di dare effetti avversi. La variabilità genetica dei bersagli molecolari dell'azione dei farmaci. La correlazione tra profilo genetico individuale ed esito della terapia

Obiettivi formativi in Inglese: The main goal is to provide fundamental knowledge on the genetic basis of variation of individual response to the most commonly used drugs. Polymorphisms of genes involved in drug metabolism, membrane receptors and cell transporters, that modulate drug efficacy and adverse effects. Genetic variation of drug molecular targets. Correlation between individual genetic profile and therapy outcome.

CFU: 3 Reteirabilità: 1

Modalità di verifica finale: Esame orale con votazione in trentesimi

Lingua ufficiale: Italiano

Moduli

Denominazione	CFU	SSD	Tipologia	Caratteristica
Farmacogenetica	3	BIO/18 GENETICA	Altre attività - scelta libera dello studente	lezioni frontali

Farmacologia generale (3 CFU)

Denominazione in Inglese: General Pharmacoligy

Obiettivi formativi: Il corso è finalizzato a fornire conoscenze di farmacologia generale con una introduzione alle principali tipologie di nuovi farmaci consentite dalle biotecnologie e alle loro caratteristiche distintive rispetto ai farmaci classici

Obiettivi formativi in Inglese: The course will be focused to provide basic knowledge of pharmacology with an introduction to the main types of new drugs allowed by biotechnology and their distinctive features compared to traditional drugs

CFU: 3 Reteirabilità: 4

Propedeuticità: Nessuna

Modalità di verifica finale: Esame orale

Lingua ufficiale: Italiano

Moduli

Denominazione	CFU	SSD	Tipologia	Caratteristica
Farmacologia generale	3	BIO/14 FARMACOLOGIA	Altre attività - scelta libera dello studente	lezioni frontali

Meccanismi molecolari della patogenicità microbica (3 CFU)

Denominazione in Inglese: Molecular mechanisms of microbial pathogenicy

Obiettivi formativi: Lo scopo del corso è fornire una conoscenza dettagliata dei meccanismi molecolari sottesi alla patogenesi delle infezioni microbiche, individuano i meccanismi molecolari della patogenicità microbica e della risposta immunitaria alle infezioni.

Obiettivi formativi in Inglese: Aims: The course is focused to learning the biochemical and molecular mechanisms responsible for infectious diseases, with attention to peculiarto pathogenicity markers and defence strategies.

CFU: 3
Reteirabilità: 1
Propedeuticità: Nessuna

Modalità di verifica finale: Esame orale con votazione in trentesimi

Lingua ufficiale: Italiano

Denominazione	CFU	SSD	Tipologia	Caratteristica
Meccanismi molecolari della patogenicità microbica	3	MED/07 MICROBIOLOGIA E MICROBIOLOGIA CLINICA	Altre attività - scelta libera dello studente	lezioni frontali

Microbiologia degli alimenti (3 CFU)

Denominazione in Inglese: Microbial food-borne diseases

Obiettivi formativi: Il corso è finalizzato alla conoscenza dell'epidemiologia, meccanismi patogenetici e diagnosi microbiologica/sierologia dei microrganismi causa di infezioni, tossi-infezioni ed intossicazioni gastro-enteriche di origine alimentare. Richiama i concetti generali delle interazioni ospite-parassita e della risposta immunitaria dell'ospite verso agenti infettivi batterici, con particolare riguardo alla risposta mucosale.

Obiettivi formativi in Inglese: The course is aimed at the knowledge of epidemiology, pathogenic mechanisms and diagnosis microbial food-borne gastro-enteric diseases. The immune response of the

host to pathogens will be analyzed, with attention to the host mucosal immunity.

CFU: 3 Reteirabilità: 1

Modalità di verifica finale: Esame finale con votazione in trentesimi

Lingua ufficiale: Italiano

Moduli

Denominazione	CFU	SSD	Tipologia	Caratteristica
Microbiologia degli alimenti	-	MED/07 MICROBIOLOGIA E MICROBIOLOGIA CLINICA	Altre attività - scelta libera dello studente	lezioni frontali

Microbiologia molecolare (6 CFU)

Denominazione in Inglese: Molecular microbiology

Obiettivi formativi: Obiettivo del corso è l'acquisizione delle basi teoriche di metodologie molecolari applicabili alla generazione di ceppi ricombinanti, rilevamento di microrganismi e dei loro rapporti filogenetici, produzione di nuove molecole e vaccini ricombinanti.

Il corso fornira le nozioni teorico-pratiche di metodologie molecolari microbiologiche. Verranno approfondite: (i) basi molecolari del trasferimento genico e generazione di ricombinanti; (ii) criteri di sistematica molecolare dei microrganismi ed analisi delle loro relazioni filogenetiche; (iii) sistemi molecolari innovativi per la rilevazione di batteri, virus

e funghi da campioni biotici e non. Strategie per la produzione di farmaci antimicrobici e vaccini ricombinanti.

Obiettivi formativi in Inglese: Aims of the course: Learning of basic molecular methodologies used for the generation of recombinant strains, for monitoring microorganisms, analyze their phylogenetic relationships, production of new molecules, and recombinant vaccines.

The course is aimed at providing theoretical and practical knowledge of molecular microbilogical methodologies. In-depth studies will be focused to learning: (i) molecular bases of gene transfer and recombinant strain generation; (ii) criteria of molecular systematic of microbes and analyses of their phylogenetic relation; (iii) molecular tools for the monitoring of bacteria, viruses, and fungi in biotic and non-biotic samples. Strategies for the production of new antimicrobial molecules and recombinant vaccines.

CFU: 6

Reteirabilità: 1

Propedeuticità: Nessuna

Modalità di verifica finale: Esame orale con votazione in trentesimi

Lingua ufficiale: Italiano

Moduli

Denominazione	CFU	SSD	Tipologia	Caratteristica
Microbiologia molecolare	-	MED/07 MICROBIOLOGIA E MICROBIOLOGIA CLINICA	Altre attività - scelta libera dello studente	lezioni frontali+laboratorio

Modellistica molecolare di biomolecole (6 CFU)

Denominazione in Inglese: Molecular modelling of biological molecules

Obiettivi formativi: L'insegnamento si propone di introdurre lo studente alla modellistica molecolare di base, fornendo al contempo una panoramica delle applicazioni della disciplina allo studio di biomolecole e alla risoluzione di problemi di interesse chimicobiologico in vista di applicazioni biotecnologiche. Apprenderà le principali tecniche computazionali utili per l'analisi conformazionale di piccole e grandi molecole. Tramite esercitazioni con comuni software di calcolo molecolare e di visualizzazione grafica lo studente imparerà a svolgere simulazioni sulle proprietà spettroscopiche, chimiche ed ottiche di singole molecole.

Obiettivi formativi in Inglese: The course is an introduction to the techniques of molecular modelling in the field of molecular systems of biological interest. The student, at the end of the course, will know the main computational methodologies to study the structure

and the energetics of small to large molecules. In addition to the formalism and the theoretical foundations of such methodologies, the students will also learn how to use them to determine structural, spectroscopical, chemical properties of molecules. These experiences with computational simulations will allow the students to rationalize and interpret data coming from experimental measurements or from other simulations so to have a more complete picture of limits and potentialities of the most common computational approaches to study biological systems.

CFU: 6

Reteirabilità: 1

Modalità di verifica finale: Esame orale con voto in trentesimi

Lingua ufficiale: Inglese

Moduli

Denominazione	CFU	SSD	Tipologia	Caratteristica
Modellistica molecolare di biomolecole	6	CHIM/02 CHIMICA FISICA	Caratterizzanti	lezioni frontali + esercitazioni

Scelta libera dello studente (9 CFU)

Denominazione in Inglese: Free choice

Obiettivi formativi: Le attività formative a scelta dello studente debbono essere approvate dal Consiglio di Corso di Studio, previo parere della Commissione Didattica. Le attività formative elencate nel gruppo "Attività consigliate per la libera scelta" non richiedono l'approvazione dei due organi sopramenzionati.

CFU: 9 Reteirabilità: 1

Modalità di verifica finale: esame scritto ed orale

Lingua ufficiale: Italiano

Moduli

Denominazione	CFU	SSD	Tipologia	Caratteristica
Scelta libera dello studente	9		Altre attività - scelta libera dello studente	altro

Tesi di Laurea Magistrale (45 CFU)

Denominazione in Inglese: Master degree Thesis

CFU: 45 Reteirabilità: 1

Modalità di verifica finale: Esame di laurea con discussione della tesi di laurea magistrale in presenza di una commissione formata da 5-7 membri fra cui il relatore e i due correlatori. La commissione valuterà il candidato in base alla discussione della tesi di laurea magistrale e in base ai colloqui pre-laurea svoltisi con i correlatori.

Lingua ufficiale: Italiano

Denominazione	CFU	SSD	Tipologia	Caratteristica
Tesi di Laurea Magistrale	45			prova finale